
Jaf, Sardar and Ramsay, Allan (2015) The Application of Constraint Rules to
Datadriven Parsing. In: the 2015 International Conference on Recent Advances in
Natural Language Processing, Bulgaria.

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/10501/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively
contact sure@sunderland.ac.uk.

Proceedings of Recent Advances in Natural Language Processing, pages 232–238,
Hissar, Bulgaria, Sep 7–9 2015.

The Application of Constraint Rules to Data-driven Parsing

Sardar Jaf
The University of Manchester
jafs@cs.man.ac.uk

Allan Ramsay
The University of Manchester
ramsaya@cs.man.ac.uk

Abstract

In this paper, we show an approach to ex-
tracting different types of constraint rules
from a dependency treebank. Also, we
show an approach to integrating these con-
straint rules into a dependency data-driven
parser, where these constraint rules in-
form parsing decisions in specific situa-
tions where a set of parsing rule (which is
induced from a classifier) may recommend
several recommendations to the parser.
Our experiments have shown that parsing
accuracy could be improved by using dif-
ferent sets of constraint rules in combina-
tion with a set of parsing rules. Our parser
is based on the arc-standard algorithm of
MaltParser but with a number of exten-
sions, which we will discuss in some de-
tail.

1 Introduction

In this paper we present a new implementation of
the arc-standard algorithm of MaltParser (Joakim,
2003; Nivre, 2006; Nivre, 2008). The key fea-
tures of this implementation are that (i) it includes
a new approach to handling non-projective trees
(Section 3); (ii) it allows the inclusion of infor-
mation about local subtrees as an extra guide to
parsing (Section 8); (iii) the assignment of labels
to arcs is carried out as a separate phase of analy-
sis rather than during the determination of depen-
dency relations between words (Section 5). We
compare the performance of the arc-standard ver-
sion of MaltParser with four different versions of
our parser in Section 9.

2 Deterministic Shift-reduce Parsing

The arc-standard algorithm deterministically gen-
erates dependency trees using two data-structures:
a queue of input words, and a stack of items that

have been looked at by the parser. Three parse
actions are applied to the queue and the stack:
SHIFT, LEFT-ARC and RIGHT-ARC. SHIFT
moves the head of the queue onto the top of the
stack, LEFT-ARC makes the head of the queue a
parent of the topmost item on the stack and pops
this item from the stack, and RIGHT-ARC makes
the topmost item on the stack a parent of the head
of the queue, removing the head of the queue and
moving the topmost item on the stack back to the
queue. At each parse transition the parser uses
a classifier trained on a dependency treebank for
predicting the next parse action given the current
state of the parser.

3 Non-projective Parsing

The arc-standard version of the MaltParser fails to
deal with non-projective trees.

Figure 1 shows a well-known example of a
Czech sentence with a non-projective dependency
tree. Figure 2 shows the problem with the ba-
sic algorithm. In step 8 from Figure 2 the parser
may perform either LEFT-ARC, RIGHT-ARC, or
SHIFT, but none of these operations lead to pro-
ducing a tree matching the original non-projective
tree. According to the dependency relations that
are extracted from the tree (as shown at the top of
Figure 2), LEFT-ARC is not allowed. On the one
hand, if the parser performs LEFT-ARC then this
will lead to the production of a tree that will not
match the original tree because that will make 5
the parent of 3, which does not match any relations
in the original tree. On the other hand, performing
RIGHT-ARC, which is allowed , will make 3 the
parent of 5. However, performing RIGHT-ARC
at this stage is not an ideal operation because 5
will not be available in subsequent stages when it
is required to become the parent of 1, which re-
mains on the queue1. This means that 1 will subse-

1LEFT-ARC and RIGHT-ARC remove the dependent

232

quently receive the wrong parent, which will pro-
duce a tree that does not match the original tree.
SHIFT will move 5 to the top of the stack, which
means that both 5 and 3 will be on the stack and
hence they will never be in a state where 3 can be-
come the parent of 5, therefore the parser will not
produce a tree that matches the original tree.

ROOT0 Z1 nich2 je3 jen4 jedna5 na6 kvalit7 .8
(Out-of them is only one-FEM-SG to quality .)

(“Only one of them concerns quality.”)

AuxK

AuxP

AuxPPred

Sb

Atr AuxZ Adv

Figure 1: Non-projective dependency graph for
a Czech sentence from the Prague Dependency
Treebank (Nivre, 2008).

Dependency relations: (0,Pred,3)(0,AuxK,8)(1,Attr,2)(3,sb,5)
(3,AuxP,6)(5,AuxP,1)(5,AuxZ,4)(6,Adv,7)
--
Step Action Queue Stack Arcs
--
1 θ [0,1,...] [] θ
2 SHIFT [1,2,...] [0] θ
3 SHIFT [2,3,...] [1,0] θ
4 RIGHT-ARC [1,3,...] [0] A1=(1,Atr,2)
5 SHIFT [3,4,...] [1,0] A1
6 SHIFT [4,5,...] [3,1,0] A1
7 LEFT-ARC [5,6,...] [4,3,1,0] A2=A1∪(5,AuxZ,4)
8 _ [5,6,...] [3,1,0] A2
--

Figure 2: Parsing the sentence in Figure 1 using
the original arc-standard algorithm.

In order to overcome the limitation of the arc-
standard algorithm of MaltParser, we allow for
combining the head of the queue with an item on
the stack that may or may not be the topmost item.
Here, we introduce LEFT-ARC(N) and RIGHT-
ARC(N) where N is any non-zero integer: LEFT-
ARC(N) says ‘Make the head of the queue the par-
ent of the Nth item on the stack and pop the item
from the stack’, RIGHT-ARC(N) says ‘Make the
head of the queue a daughter of the Nth item on
the stack, and roll the stack back onto the queue
until you reach the Nth item’. LEFT-ARC(1) and
RIGHT-ARC(1) are the arc-standard LEFT-ARC
and RIGHT-ARC operations.

As part of this implementation we can repro-
duce the non-projective graph shown in Figure 1
given the dependency relations extracted from the

item from the queue or the stack so they will not be avail-
able in subsequent steps.

graph. The parse transitions of the extended algo-
rithm, as shown in Figure 3, reproduce the non-
projective graph shown in Figure 1. The line in
bold in steps 9 from Figure 3 shows the parse tran-
sition that the original algorithm would not have
performed. In step 9, the extended algorithm per-
forms the LEFT-ARC(2) operation. It makes the
head of the queue (5) the parent of the second item
on the stack (1)2.

Dependency relations: (0,Pred,3)(0,AuxK,8)(1,Attr,2)(3,sb,5)
(3,AuxP,6)(5,AuxP,1)(5,AuxZ,4)(6,Adv,7)
--
Step Action Queue Stack Arcs
--
1 θ [0,1,...] [] θ
2 SHIFT [1,2,...] [0] θ
3 SHIFT [2,3,...] [1,0] θ
4 RIGHT-ARC(1) [1,3,...] [0] A1=(1,Atr,2)
5 SHIFT [3,4,...] [1,0] A1
6 SHIFT [4,5,...] [3,1,0] A1
7 SHIFT [5,6,...] [4,3,1,0] A1
8 LEFT-ARC(1) [5,6,...] [3,1,0] A2=A1∪(5,AuxZ,4)
9 LEFT-ARC(2) [5,6,...] [3,0] A3=A2∪(5,AuxP,1)
10 RIGHT-ARC(1) [3,6,...] [0] A4=A3∪(3,Sb,5)
11 SHIFT [6,7,8] [3,0] A4
12 SHIFT [7,8] [6,3,0] A4
13 RIGHT-ARC(1) [6,8] [3,0] A5=A4∪(6,Adv,7)
14 RIGHT-ARC(1) [3,8] [0] A6=A5∪(3,AuxP,6)
15 RIGHT-ARC(1) [0,8] [] A7=A6∪(0,Pred,3)
16 SHIFT [8] [0] A7
17 RIGHT-ARC(1) [0] [] A8=A7∪(0,AuxK,8)
18 SHIFT [] [0] A8
19 θ [] [0] A8
--

Figure 3: Parsing the sentence in Figure 1 us-
ing the extended version of the arc-standard algo-
rithm.

A similar technique for processing non-
projective sentences is proposed by Kuhlmann and
Nivre (2010), which is the non-adjacent arc transi-
tions. This technique allows for creating arcs be-
tween non-neighbouring arcs. This is achieved by
extending the arc-standard to do the followings:

LEFT-ARC-2l: This operation creates an arc
by making the topmost item on the stack the parent
of the third topmost item on the stack, and removes
the topmost item.

RIGHT-ARC(2)l: This operation creates an arc
by making the third topmost item on the stack the
parent of the topmost item on the stack, and re-
moves the topmost item.

Although Attardi (2006) claims that LEFT-
ARC(2)l and RIGHT-ARC-2l are sufficient for
producing every non-projective tree Kuhlmann
and Nivre (2010, p. 6) argues to the contrary.

Our re-implementation of the arc-standard al-
gorithm, which is a generalisation of propos-

2The head of the queue was not combined with the top-
most item on the stack in step 9 because that would have
removed 5 from the queue, which will be needed later to be
used as the parent of 1.

233

als by Kuhlmann and Nivre (2010) and Attardi
(2006), will handle all possible cases of non-
projectivity because we allow N in LEFT-ARC(N)
and RIGHT-ARC(N) to be a positive number
larger than 2 if necessary. However, it contrasts
the approach used by Kuhlmann and Nivre (2010)
in that we combine the head of the queue with any
item on the stack rather than combining the top
items on the stack. Unfortunately, our approach
broadens the range of possibilities available to the
parser at each stage of the parsing process, and
hence learning parse rules for enabling the parser
to make the right choice at each stage becomes
more difficult.

4 Assigning Scores to Parse States

Our parser generates one or more parse states from
a given state. If the queue consists of one or more
items and the stack is empty then the parser pro-
duces one state by performing SHIFT. For exam-
ple, if the queue is [1, 2, 3, 4] and the stack
is [] then the parser cannot recommend LEFT-
ARC(N) or RIGHT-ARC(N) because these two
operations require an item on the stack to be made
the parent or the daughter of the head of the queue
respectively.

If the queue consists of one or more items and
the stack consists of one item only, then there
are three possible moves: SHIFT, LEFT-ARC(1),
and RIGHT-ARC(1). However, the parse model,
which is based on a classification algorithm, will
recommend only one operation (SHIFT, LEFT-
ARC(1), or RIGHT-ARC(1)). Although in this
kind of state our parser generates three states only
one state will be given a positive score, which is
based on recommendation of the parsing rules.

If the queue consists of one or more items and
the stack consists of more than one item, then
our parser may generate more than three states
because it checks for relations between the head
of the queue and any items on the stack; i.e.,
states that are generated by LEFT-ARC(N+1) and
RIGHT-ARC(N+1), where N is a positive number.

In order to use a state from the newly generated
states we assign a score to each new state, which is
computed by using two different scores: (i) a score
that is based on the recommendation made by the
parsing rules. For example, we give a score of 1
for a SHIFT operation if it is recommended by a
parsing rule, otherwise we give it a score of 0 (and
the same applies to LEFT-ARC(N) and RIGHT-

ARC(N)). Also (ii) we add the score from (i) to
the score of the current state (which is the state
that the new parse state is generated from). The
sum of these two scores is assigned to the newly
generated parse state(s).

There are two advantages of assigning a score
to each parse state: (i) we can manipulate the as-
signment of various other scores to newly gener-
ated parse state(s), such as scores for the applica-
tion of constraint rules to parse states, and (ii) we
can rank a collection of parse states by using their
scores and then process the state with the highest
score, which we consider the most plausible state.

We store the states with various scores in an
agenda ranked based on their scores, and the state
with the highest score is explored by the parser.

5 Labelled Attachment Score

In this section we show the way we obtain labelled
attachment scores, which is largely different from
the way this is implemented in the original algo-
rithm. As in the arc-standard algorithm, for each
dependency relation between two words, a syn-
tactic label is attached to indicate the syntactic
role of the daughter item with its parent. How-
ever, the way we assign labels to dependency re-
lations during parsing is that we extract patterns
from the training data during training phase. This
contrasts with the approach used in MaltParser
whereby labels are predicted with the LEFT-ARC
and RIGHT-ARC actions of the parser which are
learned during training phase.

Each pattern or rule consists of a dependency
parent, a list of n part-of-speech (POS) tagged
items, a dependency daughter, a label, and the
frequency of the pattern in the training data. A
schema of a pattern is shown in Figure 4. The
first element of the pattern is a parent item, the
second element is a list of up to n POS tagged
items between a parent item and its daughter in
the original text, the third element is the daughter
of a parent item, the fourth element is the label for
the dependency relation and the last element is the
frequency of the pattern recorded during the train-
ing phase. Figure 4 shows the rule format where
PARENT is assigned as the parent of DAUGHTER
and that there are up to n POS tagged items be-
tween them and the dependency label between the
parent item and daughter item is LABELwhere the
last element indicates that the pattern occurred j
times during the training phase.

234

PARENT,[POS1,...,POSn],DAUGHTER,LABEL,j

Figure 4: A schema of a pattern for a label.

6 Dataset

The kind of data that is suitable for developing a
data-driven parser is an annotated treebank. There
are a number of treebanks available for induc-
ing a dependency parser for a number of natural
languages. Some of the most popular treebanks
for Arabic are: Penn Arabic Treebank (PATB)
(Maamouri and Bies, 2004), Prague Arabic depen-
dency treebank (PADT) (Smrž and Hajič, 2006),
and Columbia Arabic treebank (CATiB) (Habash
and Roth, 2009).

The linguistic information in PATB is sufficient
for inducing a parser. However, the limitation for
using this treebank directly for generating a parse
model is that its annotation schemata is based on a
phrase structure format, which cannot be used for
dependency parsing. However, we have converted
the phrase structure trees of the PATB to depen-
dency structure trees using the standard conver-
sion algorithm for transforming phrase structure
trees to dependency trees, as described is detail by
Xia and Palmer (2001).

Because we do not have access to the PATD and
CATiB treebanks, we have used the PATB3 part 1
version 3 for training and testing the arc-standard
version of MaltParser and various versions of our
parser.

In order to perform a 5-fold validation, we have
systematically generated five sets of testing data
and five sets of training data from the treebank,
where the testing data is not part of the training
data. The training data for each fold contains
approximately 112,800 words while the testing
data for each fold contains approximately 28,000
words. The average length of sentences is 29
words and the total number of testing sentences
in each fold is about 970 sentences while the total
number of sentences in the training data in each
fold is about 3880 sentence. We use the training
data for generating a set of parsing rules and for
extracting a set of constraint rules; this way we are
retrieving two different kinds of information from
the training data.

3Catalogue number LDC2005T02 from the Lin-
guistic Data Consortium (LDC). Available at:
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId
=LDC2005T02

7 The Role of Constraint Rules in
Parsing

Each intermediate state that is produced by follow-
ing recommended parse operations by the parse
model is checked to see whether it is plausible. We
consider a state to be plausible if it obeys the con-
straint rules.

A parse state is assigned a score based on the
recommendation of the parse model (see Section
4 for more details). We attempt to use constraint
rules to assign an additional score to a state if the
recommended parse operation by the parsing rules
does not violate the constraint rules. This means
that recommendations made by the parsing rules
are validated by using a set of constraint rules to
check whether they produce acceptable analyses.
This way the parser benefits from the information
provided by the parsing rules and from the infor-
mation provided by the constraint rules.

The role of the constraint rules is particularly
evident when the parser produces more than three
states from one state. In situations where the
parser is presented with a state whereby the queue
contains one or more items and the stack con-
tains more than one item, then the parser gener-
ates more than three states because it checks for
relations between the head of the queue and any
items on the stack. In this kind of situation, two
or more parse operations may be recommended
by the parsing rules; i.e., two or more states may
be given a positive score. To determine which of
the equally scored states should be explored next,
the score given by the constraint rules to a parse
state will influence the parser’s decision. For ex-
ample the lines in bold from Figure 5 where we as-
sumed that the parsing rules recommended LEFT-
ARC(1) (making 3 the parent of 2) and also LEFT-
ARC(2) (making 3 the parent of 1) they are both
given a score of 1, as shown in bold in Figure 5.
Also, we assumed that the constraint rules en-
couraged the recommendation of the parse model
and that they gave their scores to the two recom-
mended operations, where LEFT-ARC(1) is given
0.25 and LEFT-ARC(2) is given 0.5. In this sit-
uation, LEFT-ARC(2), with a total score of 1.5,
plus the score for the currently explored state (In
this example the current score is set to 1), will be
placed on the top of the agenda because it will
have the highest score (2.5). In a situation like
this, the constraint rules influence the decision of
the parser whereby LEFT-ARC(2) is performed

235

instead of LEFT-ARC(1).

States Action Queue Stack arcs Curr. Sc Sc C. Sc T. Sc
--
Current θ [3,4] [2,1] θ 1 θ θ 1
New SHIFT [4] [3,2,1] θ 1 0 0 1

RA(1) [2,4] [1] 2>3 1 0 0 1
RA(2) [1,2,4] [] 1>3 1 0 0 1
LA(1) [3,4] [1] 3>2 1 1 0.25 2.25
LA(2) [2,3,4] [] 3>1 1 1 0.5 2.5

--

Figure 5: The generation of more than three states,
LA = LEFT-ARC, RA = RIGHT-ARC, Curr = cur-
rent, Sc = Score, C = Constraint, T = Total.

In Figure 5 we have shown the way the con-
straint rules may influence parse decisions. In the
following sections, we describe different types of
constraint rules that can be extracted automatically
from a dependency treebank where we integrate
them into our parser.

8 Extracting Constraint Rules from
PATB

The main type of relations that are accounted for
in dependency parsing are the parent-daughter re-
lations between different words in a sentence. We
devote the following sections to describing two
different types constraint rules extracted from a set
of dependency trees.

8.1 Parent-daughter Relations Extraction
with Local Contextual Information

In the training phase, we use the dependency tree
of each sentence as a grammar for parsing the
sentence. During each LEFT-ARC(N) or RIGHT-
ARC(N), the dependency relation between a par-
ent and its daughter is recorded. The recorded re-
lations contain different information: (i) the par-
ent item (ii) the daughter item, (iii) a set of up to
n POS tagged items from the queue and up to n
POS tagged items from the stack4, and (iv) the
frequency of each rule. The frequency of each
rule is used for computing the probability of the
rule during parsing. The probability computation
of a rule is calculated in three steps (i) obtaining
the frequency of a rule, (ii) obtaining the sum of
the frequency of all the rules with the same par-
ent and daughter relation (regardless of the n POS
tagged items that appear between them), (iii) di-
viding the number obtained in step (i) by the num-
ber obtained in step (ii). The probability of each

4The number of items collected from the queue and the
stack may vary between 1 ... n.

rule is then used as a score for encouraging a parse
operation suggested by the parse model.

The conditional probability for the constraint
rule in Figure 6 is shown in equation (1), where ri

is a distinct rule with the same parent and daughter
but a different set of intermediate items.

P (rj) =
|rj |

n∑
i=1

|ri|
(1)

In Figure 6 we show an example of a constraint
rule with a window size of up to two items on the
queue and up to two items on the stack. The rule
in Figure 6 shows that a VERB is the parent of a
NOUN if the first item in the queue is a VERB, the
second item in the queue is a PREP, and there is
only one item on the stack which is a NOUN. Since
there is no second item on the stack the symbol
‘-’ is used for representing unavailable items.
The final element (j) of the rule represents the fre-
quency of the rule during training.

r = (VERB,NOUN,[VERB,PREP,NOUN,-],j)

Figure 6: Dependency relations with local infor-
mation.

We have evaluated our parser using this type
of constraint rules where the best parsing perfor-
mance is achieved when we recorded four items
from the queue and three items from the stack
for each dependency relation. The parsing perfor-
mance is shown in Table 1.

8.2 Subtrees

Since LEFT-ARC(N) and RIGHT-ARC(N) result
in the removal of a daughter item from the stack
or queue, which may be required in subsequent
parsing stages, it is vital to ensure that the daugh-
ter has collected all and only its daughters. Thus,
subtrees can be used to encourage the parser to re-
move a daughter item only if there is evidence that
it has collected all and only its daughters, this cor-
responds to completeness and cohesion in Lexi-
cal Functional Grammar (LFG) (Bresnan and Ka-
plan, 1982). This check is performed in two steps
by using the subtrees: (i) collecting all the daugh-
ters of the dependent item from the tree that have
been built by the parser, and (ii) finding a subtree
(from a set of subtrees collected during training
phase) that is headed by the dependent item with
the same set of daughters that are collected in (i).

236

If a matching subtree is found then the parse oper-
ation can be encouraged by giving it a score. As
shown in Figure 7, each daughter in a subtree is
associated with a score, which represents the fre-
quency of the subtree during training. The score
is used for computing the probability of the sub-
tree with a specific set of daughters, which is com-
puted by dividing the frequency of the subtree by
the total associated frequencies of all other daugh-
ters headed by the same item, this process resem-
bles the approach used by Charniak (1996). The
computed probability is then used for encouraging
the parse operation.

Figure 7 shows two subtrees headed by a VERB
where the first one has a NOUN as its daughter and
it occurred 5 times during training while in the
second rule the VERB has two NOUNs as its daugh-
ter and it occurred 10 times during training.

r = VERB,(5,[NOUN])
r = VERB,(10,[NOUN,NOUN])

Figure 7: Examples of unlexicalised subtree

The conditional probability for the subtrees in
Figure 7 is shown in equation (2) where each rf

k is
a distinct rule.

P (rk) =
rf
k

n∑
i=1

rf
i

(2)

9 Evaluation

In this section we compare the result we have
obtained for testing the arc-standard algorithm
of MaltParser5 with different versions of our re-
implementation of this algorithm: (i) DDParser,
which is our re-implementation of the arc-standard
of MaltParser; (ii) CDDParser, which is DDParser
supplemented by parent-daughter constraint rules,
i.e., the parsing rules and a set of parent-daughter
constrain rules are used during parsing, (iii) SD-
DParser, which is DDParser supplemented by lo-
cal subtrees, i.e., the parsing rules and a set of
subtrees are used during parsing, and (iv) S-CD-
DDParser, which is DDParser supplemented by a
combination of subtrees and parent-daughter con-
strain rules. The performance of each parser is
shown in Table 1.

We can note from Table 1 that DDParser
is 43.8% more efficient than MaltParser. Al-

5Available at: http://www.maltparser.org/download.html

Parsers UAS (%) LAS (%) LA (%) second/relation
MaltParser 75.2 70.0 92.2 0.144
DDParser 74.5 71.0 93.6 0.081
CDDParser 76.2 72.7 94.85 0.145
SDDParser 75.9 72.4 94.84 0.133
S-CD-DDParser 75.3 71.8 94.82 0.127

Table 1: Performance of MaltParser and our
parsers.

though the unlabelled attachment score (UAS) of
DDParser is slightly lower than that of MaltParser
(0.7%) the labelled attachment score (LAS) and
the labelled accuracy (LA) are more accurate than
MaltParser by 1% and 1.4% respectively. We be-
lieve that this improved accuracy of LAS and LA
occurred because we have used a different ap-
proach from MaltParser for assigning labels to de-
pendency relations (see Section 5 for more details
on our approach to label assignment).

The use of constraint rules has improved the
parsing accuracy of DDParser but it has noticeably
degraded its speed. This clearly indicates that the
use of constraint rules improves parsing accuracy
at the expense of speed. Having said that, the use
of parent-daughter constraint rules improved the
accuracy of our parser over the accuracy of Malt-
Parser by 1% for UAS, 2.7% for LAS and 2.65%
for LA while the parser remained as efficient as
MaltParser.

The use of local subtrees as constraint rules also
improved the accuracy of our parser over the ac-
curacy of MaltParser by 0.7% for UAS, 2.4% for
LAS and 2.64% for LA while its speed is quicker
than MaltParser by 7.6%. These results show
that the application of different types of constraint
rules to a data-driven parser affects parsing perfor-
mance differently. We have shown here that we
can trade off parsing speed for parsing accuracy
by using different constraint rules.

Additionally, we have combined the constraint
rules and subtrees and applied them to DDParser.
Applying both extensions to the parser did not
lead to better results than using them individually.
However, applying both extensions lead to better
parsing accuracy than using none of them but the
parsing speed degraded by about 36%.

It is worth noting that the training time of our
parser, including the automatic extraction of con-
straint rules from the training data, was much
shorter than the training time of the original algo-
rithm. The training time for the original algorithm
took approximately four hours. While the train-
ing time for our parser took approximately thirty

237

minutes. We assume that our training time was
shorter because we have used the J48 classifica-
tion algorithm (which is the Weka’s6 implementa-
tion of C4.5 (Quinlan, 1996)) instead of LiBSVM
(Chang and Lin, 2011), which is used by the orig-
inal algorithm7.

In conclusion, from the experiments that we
have conducted in this paper, we can note that
applying constraint rules to a data-driven parser
may improve the parsing accuracy but the parsing
speed may degrade.

10 Future Work

Since there are a number of treebanks for different
natural languages and that our method is language
independent, we would like to evaluate our parser
on different languages and examine its extendibil-
ity to other languages.

For this study, we have extracted a set of con-
straint rules from the same training data that we
have used for generating a parse model. In the
future, we would like to obtain a set of linguistic
grammatical rules and apply them to our parser for
validating operations recommended by the parse
model.

11 Summary

In this paper we have shown an extension to the
arc-standard algorithm of MaltParser. We have
also shown a method to automatically extracting
different kinds of constraint rules from a depen-
dency treebank.

Our re-implementation of the arc-standard algo-
rithm of MaltParser allows us to integrate differ-
ent kinds of constraint rules to it. We have shown
that the application of these constraint rules have
improved the parsing accuracy at the expense of
parsing speed. Although the application of con-
straint rules to parsing degraded the parsing speed
the parser remained as efficient as the original al-
gorithm.

Acknowledgements

This work was funded by the Qatar National Re-
search Fund (grant NPRP 09-046-6-001).

6Available publicly at:
http://www.cs.waikato.ac.nz/ml/weka/index.html

7We have experimented with a large number of classifica-
tion algorithms with various features and settings for training
our parser, but we cannot present them in this paper due to
space limitation. See (Sardar, 2015) for more details on ex-
periments on using different classifiers for parsing.

References
Giuseppe Attardi. 2006. Experiments with a multi-

language non-projective dependency parser. In Pro-
ceedings of the Tenth Conference on Computational
Natural Language Learning, CoNLL-X ’06, pages
166–170, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Joan Bresnan and Ronald Kaplan. 1982. Lexical func-
tion grammar. In J.W. Bresnan, editor, The Men-
tal Representation of Grammatical Relations, pages
173–281, Cambridge, MA. MIT Press.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May.

Eugene Charniak. 1996. Tree-bank Grammars. In
Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 1031–1036.

Nizar Habash and Ryan M. Roth. 2009. Catib: The
columbia arabic treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
221–224.

Nivre Joakim. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT, pages 149–160. Citeseer.

Marco Kuhlmann and Joakim Niver. 2010. Transition-
based techniques for non-projective dependency
parsing. Northern European Journal of Language
Technology, 2:1–19.

Mohamed Maamouri and Ann Bies. 2004. Develop-
ing an Arabic treebank: methods, guidelines, proce-
dures, and tools. In Proceedings of the Workshop on
Computational Approaches to Arabic Script-based
Languages, pages 2–9, Geneva.

Joakim Nivre. 2006. Inductive dependency parsing,
volume 34 of Text, Speech and Language Technol-
ogy. Springer.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34:513–553.

John R. Quinlan. 1996. Improved use of continuous
attributes in c4.5. Journal of Artificial Intelligence
Research, 4:77–90.

Jaf Sardar. 2015. The Application of Constraint Rules
to Data-driven Parsing. PhD Thesis, School of
Computer Science, The University of Manchester.

Otakar Smrž and Jan Hajič. 2006. The other arabic
treebank: Prague dependencies and functions. Ara-
bic Computational Linguistics: Current Implemen-
tations. CSLI Publications, 104.

Fei Xia and Martha Palmer. 2001. Converting de-
pendency structures to phrase structures. In 1st Hu-
man Language Technology Conference (HLT-2001),
pages 1–5, San Diego.

238

